Skip to content

Cpu Numba

particle_interaction

Calculates the interaction between particles based on their properties and returns the result.

Parameters:

Name Type Description Default
lmax int

The maximum value of the angular momentum quantum number l. It determines the size of the arrays plm and sph_h.

required
particle_number int

The number of particles in the system.

required
idx ndarray

A numpy array of shape (jmax, 5), where jmax is the total number of interactions between particles. Each row of idx represents an interaction and contains the following information: - s1 (int): The index of the first particle. - n1 (int): The index of the first particle's property. - tau1 (int): The tau value of the first particle. - l1 (int): The l value of the first particle. - m1 (int): The m value of the first particle.

required
x ndarray

A numpy array representing the positions of the particles. It has shape (particle_number,) and contains the x-coordinates of the particles.

required
translation_table ndarray

A 3-dimensional numpy array that stores the translation coefficients used in the calculation. It has shape (n2, n1, p) where n2 and n1 are the indices of the translation coefficients, and p is the maximum.

required
plm ndarray

A numpy array representing the associated Legendre polynomials. It has shape (pmax * (pmax + 1) // 2, s1max, s2max), where pmax is the maximum degree of the Legendre polynomials.

required
sph_h ndarray

A numpy array representing the spherical harmonics. It has shape (jmax, jmax, channels), where jmax is the maximum number of particles, channels is the number of channels.

required
e_j_dm_phi ndarray

The parameter e_j_dm_phi is not defined in the code snippet you provided. Could you please provide the definition or explanation of what e_j_dm_phi represents?

required

Returns:

Name Type Description
wx ndarray

The array wx, which represents the result of the particle interaction calculations.

Source code in yasfpy/functions/cpu_numba.py
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
@jit(nopython=True, parallel=True, nogil=True, fastmath=True, cache=True)
def particle_interaction(
    lmax: int,
    particle_number: int,
    idx: np.ndarray,
    x: np.ndarray,
    translation_table: np.ndarray,
    plm: np.ndarray,
    sph_h: np.ndarray,
    e_j_dm_phi,
):
    """Calculates the interaction between particles based on their properties and returns the result.

    Args:
        lmax (int): The maximum value of the angular momentum quantum number `l`. It determines the size of the arrays `plm` and `sph_h`.
        particle_number (int): The number of particles in the system.
        idx (np.ndarray): A numpy array of shape `(jmax, 5)`, where `jmax` is the total number of interactions between particles. Each row of `idx` represents an interaction and contains the following information:
            - s1 (int): The index of the first particle.
            - n1 (int): The index of the first particle's property.
            - tau1 (int): The tau value of the first particle.
            - l1 (int): The l value of the first particle.
            - m1 (int): The m value of the first particle.
        x (np.ndarray): A numpy array representing the positions of the particles. It has shape `(particle_number,)` and contains the x-coordinates of the particles.
        translation_table (np.ndarray): A 3-dimensional numpy array that stores the translation coefficients used in the calculation. It has shape `(n2, n1, p)` where `n2` and `n1` are the indices of the translation coefficients, and `p` is the maximum.
        plm (np.ndarray): A numpy array representing the associated Legendre polynomials. It has shape `(pmax * (pmax + 1) // 2, s1max, s2max)`, where `pmax` is the maximum degree of the Legendre polynomials.
        sph_h (np.ndarray): A numpy array representing the spherical harmonics. It has shape `(jmax, jmax, channels)`, where `jmax` is the maximum number of particles, `channels` is the number of channels.
        e_j_dm_phi (np.ndarray): The parameter `e_j_dm_phi` is not defined in the code snippet you provided. Could you please provide the definition or explanation of what `e_j_dm_phi` represents?

    Returns:
        wx (np.ndarray): The array `wx`, which represents the result of the particle interaction calculations.
    """
    jmax = particle_number * 2 * lmax * (lmax + 2)
    channels = sph_h.shape[-1]

    wx = np.zeros(x.size * channels, dtype=complex128).reshape(x.shape + (channels,))

    for w_idx in prange(jmax * jmax * channels):
        w = w_idx % channels
        j_idx = w_idx // channels
        j1 = j_idx // jmax
        j2 = j_idx % jmax
        s1, n1, tau1, l1, m1 = idx[j1, :]
        s2, n2, tau2, l2, m2 = idx[j2, :]

        if s1 == s2:
            continue

        delta_tau = np.absolute(tau1 - tau2)
        delta_l = np.absolute(l1 - l2)
        delta_m = np.absolute(m1 - m2)

        val = 0j
        for p in range(np.maximum(delta_m, delta_l + delta_tau), l1 + l2 + 1):
            val += (
                translation_table[n2, n1, p]
                * plm[p * (p + 1) // 2 + delta_m, s1, s2]
                * sph_h[p, s1, s2, w]
            )
        val *= e_j_dm_phi[m2 - m1 + 2 * lmax, s1, s2] * x[j2]

        wx[j1, w] += val

    return wx

compute_idx_lookups

The function compute_idx_lookups generates an index lookup table for a given lmax and particle_number using parallel processing.

Parameters:

Name Type Description Default
lmax int

The maximum value of the angular momentum quantum number l. It determines the range of values for l in the nested loop.

required
particle_number int

The number of particles in the system.

required

Returns:

Name Type Description
idx ndarray

A NumPy array idx which contains the computed index lookups.

Source code in yasfpy/functions/cpu_numba.py
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
@jit(nopython=True, parallel=True, fastmath=True)
def compute_idx_lookups(lmax: int, particle_number: int):
    """
    The function `compute_idx_lookups` generates an index lookup table for a given `lmax` and
    `particle_number` using parallel processing.

    Args:
        lmax (int): The maximum value of the angular momentum quantum number `l`. It determines the range of values for `l` in the nested loop.
        particle_number (int): The number of particles in the system.

    Returns:
        idx (np.ndarray): A NumPy array `idx` which contains the computed index lookups.
    """
    nmax = 2 * lmax * (lmax + 2)
    idx = np.zeros(nmax * particle_number * 5, dtype=int64).reshape(
        (nmax * particle_number, 5)
    )

    # TODO: Needs further testing!
    # TODO: Make it go brrrr
    # for i in prange(particle_number * nmax):
    #     s = i // (2 * lmax * (lmax + 2))
    #     i_new = i % (2 * lmax * (lmax + 2))
    #     tau = i_new // (lmax * (lmax + 2)) + 1
    #     i_new = i_new % (lmax * (lmax + 2))
    #     l = np.floor(np.sqrt(i_new + 1))
    #     m = i_new - (l * l + l - 1)
    #     n = (tau - 1) * lmax * (lmax + 2) + (l - 1) * (l + 1) + l + m
    #     idx[i, 0] = s
    #     idx[i, 1] = n
    #     idx[i, 2] = tau
    #     idx[i, 3] = l
    #     idx[i, 4] = m

    for s in prange(particle_number):
        for tau in range(1, 3):
            for l in range(1, lmax + 1):
                for m in range(-l, l + 1):
                    n = (tau - 1) * lmax * (lmax + 2) + (l - 1) * (l + 1) + l + m
                    i = n + s * nmax
                    idx[i, 0] = s
                    idx[i, 1] = n
                    idx[i, 2] = tau
                    idx[i, 3] = l
                    idx[i, 4] = m

    return idx

compute_scattering_cross_section

Calculates the scattering cross section for a given set of input parameters.

Parameters:

Name Type Description Default
lmax int

The maximum angular momentum quantum number. It determines the maximum value of l in the calculations.

required
particle_number int

The number of particles in the system.

required
idx ndarray

A numpy array of shape (jmax, 5), where jmax is the total number of particle pairs. Each row of idx represents a particle pair and contains the following information: - s (int): The index of the first particle. - n (int): The index of the second particle. - tau (int): The tau value. - l (int): The l value. - m (int): The m value.

required
sfc ndarray

A numpy array of shape (s, n, channels), where:

required
translation_table ndarray

A 3-dimensional numpy array that stores the translation coefficients used in the computation of the scattering cross section. It has shape (n2, n1, p) where n2 and n1 are the number of radial functions for the second and first particles, respectively, and p is the order of the Legendre polynomial.

required
plm ndarray

A numpy array representing the associated Legendre polynomials. It has shape (pmax * (pmax + 1) // 2, 2, 2), where pmax is the maximum value of p in the loop.

required
sph_h ndarray

A numpy array of shape (pmax, s1max, s2max, channels). It represents the scattering matrix elements for each combination of s1, s2, and p, where p is the order of the Legendre polynomial.

required
e_j_dm_phi ndarray

A numpy array representing the scattering phase function. It has shape (2*lmax+1, channels, channels) and contains complex values. The indices (j, s1, s2) represent the angular momentum index j, and the spin indices s1 and s2.

required

Returns:

Name Type Description
c_sca_complex ndarray

The complex scattering cross section c_sca_complex.

Source code in yasfpy/functions/cpu_numba.py
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
@jit(nopython=True, parallel=True, nogil=True, fastmath=True)
def compute_scattering_cross_section(
    lmax: int,
    particle_number: int,
    idx: np.ndarray,
    sfc: np.ndarray,
    translation_table: np.ndarray,
    plm: np.ndarray,
    sph_h: np.ndarray,
    e_j_dm_phi: np.ndarray,
):
    """Calculates the scattering cross section for a given set of input parameters.

    Args:
        lmax (int): The maximum angular momentum quantum number. It determines the maximum value of `l` in the calculations.
        particle_number (int): The number of particles in the system.
        idx (np.ndarray): A numpy array of shape `(jmax, 5)`, where `jmax` is the total number of particle pairs. Each row of `idx` represents a particle pair and contains the following information:
            - s (int): The index of the first particle.
            - n (int): The index of the second particle.
            - tau (int): The tau value.
            - l (int): The l value.
            - m (int): The m value.
        sfc (np.ndarray): A numpy array of shape `(s, n, channels)`, where:
        translation_table (np.ndarray): A 3-dimensional numpy array that stores the translation coefficients used in the computation of the scattering cross section. It has shape `(n2, n1, p)` where `n2` and `n1` are the number of radial functions for the second and first particles, respectively, and `p` is the order of the Legendre polynomial.
        plm (np.ndarray): A numpy array representing the associated Legendre polynomials. It has shape `(pmax * (pmax + 1) // 2, 2, 2)`, where `pmax` is the maximum value of `p` in the loop.
        sph_h (np.ndarray): A numpy array of shape `(pmax, s1max, s2max, channels)`. It represents the scattering matrix elements for each combination of `s1`, `s2`, and `p`, where `p` is the order of the Legendre polynomial.
        e_j_dm_phi (np.ndarray): A numpy array representing the scattering phase function. It has shape `(2*lmax+1, channels, channels)` and contains complex values. The indices `(j, s1, s2)` represent the angular momentum index `j`, and the spin indices `s1` and `s2`.

    Returns:
        c_sca_complex (np.ndarray): The complex scattering cross section `c_sca_complex`.
    """
    jmax = particle_number * 2 * lmax * (lmax + 2)
    channels = sph_h.shape[-1]

    c_sca_complex = np.zeros(channels, dtype=complex128)

    for j_idx in prange(jmax * jmax):
        j1 = j_idx // jmax
        j2 = j_idx % jmax
        s1, n1, _, _, m1 = idx[j1, :]
        s2, n2, _, _, m2 = idx[j2, :]

        delta_m = np.absolute(m1 - m2)

        p_dependent = np.zeros(channels, dtype=complex128)
        for p in range(delta_m, 2 * lmax + 1):
            p_dependent += (
                translation_table[n2, n1, p]
                * plm[p * (p + 1) // 2 + delta_m, s1, s2]
                * sph_h[p, s1, s2, :]
            )
        p_dependent *= (
            np.conj(sfc[s1, n1, :])
            * e_j_dm_phi[m2 - m1 + 2 * lmax, s1, s2]
            * sfc[s2, n2, :]
        )

        c_sca_complex += p_dependent

    return c_sca_complex

compute_radial_independent_scattered_field_legacy

Calculates the scattered field for a given set of parameters and returns the result.

Parameters:

Name Type Description Default
lmax int

The maximum value of the angular momentum quantum number l. It determines the maximum order of the spherical harmonics used in the computation.

required
particles_position ndarray

An array representing the positions of particles. It has shape (num_particles, 3), where num_particles is the number of particles and each row represents the x, y, and z coordinates of a particle.

required
idx ndarray

An array containing the indices of the particles. It has shape (jmax, 5) where jmax is the total number of particles. Each row of idx represents a particle and contains the following information:

required
sfc ndarray

A 3-dimensional array representing the scattering form factors. It has dimensions (s, n, w), where:

required
k_medium ndarray

An array representing the wave number in the medium. It is used in the calculation of the scattered field.

required
azimuthal_angles ndarray

An array of azimuthal angles, representing the angles at which the scattered field is computed.

required
e_r ndarray

An array representing the radial component of the electric field. It has shape (azimuthal_angles.size, 3), where azimuthal_angles.size is the number of azimuthal angles and 3 represents the three Cartesian components of the electric field.

required
e_phi ndarray

An array representing the electric field component in the azimuthal direction. It has a shape of (azimuthal_angles.size, 3), where azimuthal_angles.size is the number of azimuthal angles and 3 represents the three components of the electric field.

required
e_theta ndarray

An array representing the electric field component in the theta direction. It has a shape of (azimuthal_angles.size, 3), where azimuthal_angles.size is the number of azimuthal angles and 3 represents the three components of the electric field.

required
pilm ndarray

An array representing the matrix of spherical harmonics coefficients. It has a shape of (lmax+1, lmax+1, azimuthal_angles.size). Each element pilm[l, m, a] represents the coefficient of the spherical harmonics for a given l, m, and azimuthal angle a.

required
taulm ndarray

An array representing the scattering coefficients for each combination of l, m, and azimuthal angle a. It has a shape of (lmax+1, lmax+1, azimuthal_angles.size). The values in taulm represent the scattering coefficients.

required

Returns:

Name Type Description
e_1_sca ndarray

An array of complex numbers representing the scattered field.

Source code in yasfpy/functions/cpu_numba.py
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
@jit(nopython=True, parallel=True, nogil=True, fastmath=True)
def compute_radial_independent_scattered_field_legacy(
    lmax: int,
    particles_position: np.ndarray,
    idx: np.ndarray,
    sfc: np.ndarray,
    k_medium: np.ndarray,
    azimuthal_angles: np.ndarray,
    e_r: np.ndarray,
    e_phi: np.ndarray,
    e_theta: np.ndarray,
    pilm: np.ndarray,
    taulm: np.ndarray,
):
    """Calculates the scattered field for a given set of parameters and returns the result.

    Args:
        lmax (int): The maximum value of the angular momentum quantum number `l`. It determines the maximum order of the spherical harmonics used in the computation.
        particles_position (np.ndarray): An array representing the positions of particles. It has shape `(num_particles, 3)`, where `num_particles` is the number of particles and each row represents the x, y, and z coordinates of a particle.
        idx (np.ndarray): An array containing the indices of the particles. It has shape `(jmax, 5)` where `jmax` is the total number of particles. Each row of `idx` represents a particle and contains the following information:
        sfc (np.ndarray): A 3-dimensional array representing the scattering form factors. It has dimensions `(s, n, w)`, where:
        k_medium (np.ndarray): An array representing the wave number in the medium. It is used in the calculation of the scattered field.
        azimuthal_angles (np.ndarray): An array of azimuthal angles, representing the angles at which the scattered field is computed.
        e_r (np.ndarray): An array representing the radial component of the electric field. It has shape `(azimuthal_angles.size, 3)`, where `azimuthal_angles.size` is the number of azimuthal angles and 3 represents the three Cartesian components of the electric field.
        e_phi (np.ndarray): An array representing the electric field component in the azimuthal direction. It has a shape of `(azimuthal_angles.size, 3)`, where `azimuthal_angles.size` is the number of azimuthal angles and `3` represents the three components of the electric field.
        e_theta (np.ndarray): An array representing the electric field component in the theta direction. It has a shape of `(azimuthal_angles.size, 3)`, where `azimuthal_angles.size` is the number of azimuthal angles and `3` represents the three components of the electric field.
        pilm (np.ndarray): An array representing the matrix of spherical harmonics coefficients. It has a shape of `(lmax+1, lmax+1, azimuthal_angles.size)`. Each element `pilm[l, m, a]` represents the coefficient of the spherical harmonics for a given `l`, `m`, and azimuthal angle `a`.
        taulm (np.ndarray): An array representing the scattering coefficients for each combination of `l`, `m`, and azimuthal angle `a`. It has a shape of `(lmax+1, lmax+1, azimuthal_angles.size)`. The values in `taulm` represent the scattering coefficients.

    Returns:
        e_1_sca (np.ndarray): An array of complex numbers representing the scattered field.

    """
    e_1_sca = np.zeros(
        azimuthal_angles.size * 3 * k_medium.size, dtype=complex128
    ).reshape((azimuthal_angles.size, 3, k_medium.size))
    jmax = particles_position.shape[0] * 2 * lmax * (lmax + 2)

    for global_idx in prange(jmax * azimuthal_angles.size * k_medium.size):
        w_idx = global_idx % (jmax * k_medium.size)
        g_idx = global_idx // (jmax * k_medium.size)

        a = g_idx

        w = w_idx % k_medium.size
        j_idx = w_idx // k_medium.size
        s, n, tau, l, m = idx[j_idx, :]

        t = (
            np.power(1j, tau - l - 2)
            * sfc[s, n, w]
            / np.sqrt(2 * l * (l + 1))
            * np.exp(
                1j
                * (
                    m * azimuthal_angles[a]
                    - k_medium[w] * np.sum(particles_position[s, :] * e_r[a, :])
                )
            )
        )

        if tau == 1:
            e_1_sca[a, :, w] += t * (
                e_theta[a, :] * pilm[l, np.abs(m), a] * 1j * m
                - e_phi[a, :] * taulm[l, np.abs(m), a]
            )
        else:
            e_1_sca[a, :, w] += t * (
                e_phi[a, :] * pilm[l, np.abs(m), a] * 1j * m
                + e_theta[a, :] * taulm[l, np.abs(m), a]
            )

    return e_1_sca

compute_electric_field_angle_components

Calculates the electric field components in the theta and phi directions for given input parameters.

Parameters:

Name Type Description Default
lmax int

The maximum value of the angular momentum quantum number l. It determines the maximum value of l for which the calculations will be performed.

required
particles_position ndarray

The positions of particles. It has shape (num_particles, 3), where num_particles is the number of particles and each particle has 3 coordinates (x, y, z).

required
idx ndarray

A numpy array of shape (jmax, 5), where jmax is the total number of particles multiplied by 2 * lmax * (lmax + 2). Each row of idx represents the indices (s, n, tau, l, m).

required
sfc ndarray

A 3-dimensional numpy array representing the scattering form factors. It has dimensions (s, n, w).

required
k_medium ndarray

The wave vector in the medium. It is a numpy array that contains the wave vector values for different frequencies or wavelengths.

required
azimuthal_angles ndarray

An array representing the azimuthal angles at which the electric field components are computed. It specifies the angles at which the electric field is measured in the azimuthal direction.

required
e_r ndarray

The unit vector pointing in the direction of the electric field. It is a numpy array of shape (azimuthal_angles.size, 3), where each row corresponds to a different azimuthal angle and the three columns represent the x, y, and z components.

required
pilm ndarray

A 3-dimensional numpy array of shape (lmax+1, lmax+1, azimuthal_angles.size). It represents the matrix elements of the electric field expansion coefficients for the theta component. The indices (l, m, a) correspond to the spherical harmonics.

required
taulm ndarray

A numpy array that represents the angular momentum coupling coefficients. It has a shape of (lmax+1, lmax+1, azimuthal_angles.size). The first dimension represents the value of l, the second dimension represents the value of m, and the third dimension represents the azimuthal angle.

required

Returns:

Name Type Description
e_field_theta ndarray

The electric field component in the theta direction.

e_field_phi ndarray

The electric field component in the phi direction.

Source code in yasfpy/functions/cpu_numba.py
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
@jit(nopython=True, parallel=True, nogil=True, fastmath=True)
def compute_electric_field_angle_components(
    lmax: int,
    particles_position: np.ndarray,
    idx: np.ndarray,
    sfc: np.ndarray,
    k_medium: np.ndarray,
    azimuthal_angles: np.ndarray,
    e_r: np.ndarray,
    pilm: np.ndarray,
    taulm: np.ndarray,
):
    """Calculates the electric field components in the theta and phi directions for given input parameters.

    Args:
        lmax (int): The maximum value of the angular momentum quantum number `l`. It determines the maximum value of `l` for which the calculations will be performed.
        particles_position (np.ndarray): The positions of particles. It has shape `(num_particles, 3)`, where `num_particles` is the number of particles and each particle has 3 coordinates (x, y, z).
        idx (np.ndarray): A numpy array of shape `(jmax, 5)`, where `jmax` is the total number of particles multiplied by `2 * lmax * (lmax + 2)`. Each row of `idx` represents the indices `(s, n, tau, l, m)`.
        sfc (np.ndarray): A 3-dimensional numpy array representing the scattering form factors. It has dimensions `(s, n, w)`.
        k_medium (np.ndarray): The wave vector in the medium. It is a numpy array that contains the wave vector values for different frequencies or wavelengths.
        azimuthal_angles (np.ndarray): An array representing the azimuthal angles at which the electric field components are computed. It specifies the angles at which the electric field is measured in the azimuthal direction.
        e_r (np.ndarray): The unit vector pointing in the direction of the electric field. It is a numpy array of shape `(azimuthal_angles.size, 3)`, where each row corresponds to a different azimuthal angle and the three columns represent the x, y, and z components.
        pilm (np.ndarray): A 3-dimensional numpy array of shape `(lmax+1, lmax+1, azimuthal_angles.size)`. It represents the matrix elements of the electric field expansion coefficients for the theta component. The indices `(l, m, a)` correspond to the spherical harmonics.
        taulm (np.ndarray): A numpy array that represents the angular momentum coupling coefficients. It has a shape of `(lmax+1, lmax+1, azimuthal_angles.size)`. The first dimension represents the value of `l`, the second dimension represents the value of `m`, and the third dimension represents the azimuthal angle.

    Returns:
        e_field_theta (np.ndarray): The electric field component in the theta direction.
        e_field_phi (np.ndarray): The electric field component in the phi direction.
    """
    e_field_theta = np.zeros(
        azimuthal_angles.size * k_medium.size, dtype=complex128
    ).reshape((azimuthal_angles.size, k_medium.size))
    e_field_phi = np.zeros_like(e_field_theta)

    jmax = particles_position.shape[0] * 2 * lmax * (lmax + 2)

    for global_idx in prange(jmax * azimuthal_angles.size * k_medium.size):
        w_idx = global_idx % (jmax * k_medium.size)
        g_idx = global_idx // (jmax * k_medium.size)

        a = g_idx

        w = w_idx % k_medium.size
        j_idx = w_idx // k_medium.size
        s, n, tau, l, m = idx[j_idx, :]

        t = (
            np.power(1j, tau - l - 2)
            * sfc[s, n, w]
            / np.sqrt(2 * l * (l + 1))
            * np.exp(
                1j
                * (
                    m * azimuthal_angles[a]
                    - k_medium[w] * np.sum(particles_position[s, :] * e_r[a, :])
                )
            )
        )

        if tau == 1:
            e_field_theta[a, w] += t * pilm[l, np.abs(m), a] * 1j * m
            e_field_phi[a, w] -= t * taulm[l, np.abs(m), a]
        else:
            e_field_theta[a, w] += t * taulm[l, np.abs(m), a]
            e_field_phi[a, w] += t * pilm[l, np.abs(m), a] * 1j * m

    return e_field_theta, e_field_phi

compute_polarization_components

Compute the polarization components of electromagnetic fields.

Parameters:

Name Type Description Default
number_of_wavelengths int

The number of wavelengths.

required
number_of_angles int

The number of angles.

required
e_field_theta ndarray

The electric field component in the theta direction.

required
e_field_phi ndarray

The electric field component in the phi direction.

required

Returns:

Name Type Description
degree_of_polarization_tuple tuple

A tuple containing the following polarization components: - I (np.ndarray): The total intensity. - degree_of_polarization (np.ndarray): The degree of polarization. - degree_of_linear_polarization (np.ndarray): The degree of linear polarization. - degree_of_linear_polarization_q (np.ndarray): The degree of linear polarization in the Q direction. - degree_of_linear_polarization_u (np.ndarray): The degree of linear polarization in the U direction. - degree_of_circular_polarization (np.ndarray): The degree of circular polarization.

Source code in yasfpy/functions/cpu_numba.py
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
@jit(nopython=True, parallel=True, nogil=True, fastmath=True)
def compute_polarization_components(
    number_of_wavelengths: int,
    number_of_angles: int,
    e_field_theta: np.ndarray,
    e_field_phi: np.ndarray,
):
    """
    Compute the polarization components of electromagnetic fields.

    Args:
        number_of_wavelengths (int): The number of wavelengths.
        number_of_angles (int): The number of angles.
        e_field_theta (np.ndarray): The electric field component in the theta direction.
        e_field_phi (np.ndarray): The electric field component in the phi direction.

    Returns:
        degree_of_polarization_tuple (tuple): A tuple containing the following polarization components:
            - I (np.ndarray): The total intensity.
            - degree_of_polarization (np.ndarray): The degree of polarization.
            - degree_of_linear_polarization (np.ndarray): The degree of linear polarization.
            - degree_of_linear_polarization_q (np.ndarray): The degree of linear polarization in the Q direction.
            - degree_of_linear_polarization_u (np.ndarray): The degree of linear polarization in the U direction.
            - degree_of_circular_polarization (np.ndarray): The degree of circular polarization.
    """
    # Stokes components
    # S = np.zeros(4 * number_of_angles * number_of_wavelengths, dtype=complex128).reshape((4, number_of_angles, number_of_wavelengths))
    I = np.zeros(number_of_angles * number_of_wavelengths, dtype=float64).reshape(
        (number_of_angles, number_of_wavelengths)
    )
    Q = np.zeros_like(I)
    U = np.zeros_like(I)
    V = np.zeros_like(I)

    for global_idx in prange(number_of_angles * number_of_wavelengths):
        w_idx = global_idx % number_of_wavelengths
        a_idx = global_idx // number_of_wavelengths

        e_field_theta_abs = (
            e_field_theta[a_idx, w_idx].real ** 2
            + e_field_theta[a_idx, w_idx].imag ** 2
        )
        e_field_phi_abs = (
            e_field_phi[a_idx, w_idx].real ** 2 + e_field_phi[a_idx, w_idx].imag ** 2
        )
        e_field_angle_interaction = (
            e_field_theta[a_idx, w_idx] * e_field_phi[a_idx, w_idx].conjugate()
        )

        I[a_idx, w_idx] = e_field_theta_abs + e_field_phi_abs
        Q[a_idx, w_idx] = e_field_theta_abs - e_field_phi_abs
        U[a_idx, w_idx] = -2 * e_field_angle_interaction.real
        V[a_idx, w_idx] = 2 * e_field_angle_interaction.imag

    degree_of_polarization = np.sqrt(Q**2 + U**2 + V**2) / I
    degree_of_linear_polarization = np.sqrt(Q**2 + U**2) / I
    degree_of_linear_polarization_q = -Q / I
    degree_of_linear_polarization_u = U / I
    degree_of_circular_polarization = V / I

    return (
        I,
        degree_of_polarization,
        degree_of_linear_polarization,
        degree_of_linear_polarization_q,
        degree_of_linear_polarization_u,
        degree_of_circular_polarization,
    )

compute_radial_independent_scattered_field

Compute the radial independent scattered field.

Parameters:

Name Type Description Default
number_of_wavelengths int

The number of wavelengths.

required
number_of_angles int

The number of angles.

required
e_phi ndarray

The electric field in the phi direction.

required
e_theta ndarray

The electric field in the theta direction.

required
e_field_theta ndarray

The electric field theta component.

required
e_field_phi ndarray

The electric field phi component.

required

Returns:

Name Type Description
e_1_sca ndarray

The computed radial independent scattered field.

Source code in yasfpy/functions/cpu_numba.py
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
@jit(nopython=True, parallel=True, nogil=True, fastmath=True)
def compute_radial_independent_scattered_field(
    number_of_wavelengths: int,
    number_of_angles: int,
    e_phi: np.ndarray,
    e_theta: np.ndarray,
    e_field_theta: np.ndarray,
    e_field_phi: np.ndarray,
):
    """
    Compute the radial independent scattered field.

    Args:
        number_of_wavelengths (int): The number of wavelengths.
        number_of_angles (int): The number of angles.
        e_phi (np.ndarray): The electric field in the phi direction.
        e_theta (np.ndarray): The electric field in the theta direction.
        e_field_theta (np.ndarray): The electric field theta component.
        e_field_phi (np.ndarray): The electric field phi component.

    Returns:
        e_1_sca (np.ndarray): The computed radial independent scattered field.
    """
    e_1_sca = np.zeros(
        number_of_angles * 3 * number_of_wavelengths, dtype=complex128
    ).reshape((number_of_angles, 3, number_of_wavelengths))

    for global_idx in prange(number_of_angles * number_of_wavelengths):
        w = global_idx % number_of_wavelengths
        a = global_idx // number_of_wavelengths

        e_1_sca[a, :, w] = (
            e_field_theta[a, w] * e_theta[a, :] + e_field_phi[a, w] * e_phi[a, :]
        )

    return e_1_sca

compute_lookup_tables

Compute lookup tables for spherical computations.

Parameters:

Name Type Description Default
lmax int

The maximum degree of the spherical harmonics.

required
size_parameter ndarray

Array of size parameters.

required
phi ndarray

Array of azimuthal angles.

required
cosine_theta ndarray

Array of cosine of polar angles.

required

Returns:

Name Type Description
spherical_bessel ndarray

Array of spherical Bessel functions.

spherical_hankel ndarray

Array of spherical Hankel functions.

e_j_dm_phi ndarray

Array of exponential terms.

p_lm ndarray

Array of associated Legendre polynomials.

Source code in yasfpy/functions/cpu_numba.py
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
@jit(parallel=True, forceobj=True)
def compute_lookup_tables(
    lmax: int, size_parameter: np.ndarray, phi: np.ndarray, cosine_theta: np.ndarray
):
    """
    Compute lookup tables for spherical computations.

    Args:
        lmax (int): The maximum degree of the spherical harmonics.
        size_parameter (np.ndarray): Array of size parameters.
        phi (np.ndarray): Array of azimuthal angles.
        cosine_theta (np.ndarray): Array of cosine of polar angles.

    Returns:
        spherical_bessel (np.ndarray): Array of spherical Bessel functions.
        spherical_hankel (np.ndarray): Array of spherical Hankel functions.
        e_j_dm_phi (np.ndarray): Array of exponential terms.
        p_lm (np.ndarray): Array of associated Legendre polynomials.
    """
    spherical_hankel = np.zeros(
        (2 * lmax + 1) * np.prod(size_parameter.shape), dtype=complex
    ).reshape((2 * lmax + 1,) + size_parameter.shape)
    spherical_bessel = np.zeros_like(spherical_hankel)
    e_j_dm_phi = np.zeros(
        (4 * lmax + 1) * np.prod(size_parameter.shape[:2]), dtype=complex
    ).reshape((4 * lmax + 1,) + size_parameter.shape[:2])
    p_lm = np.zeros(
        (lmax + 1) * (2 * lmax + 1) * np.prod(size_parameter.shape[:2])
    ).reshape(((lmax + 1) * (2 * lmax + 1),) + size_parameter.shape[:2])

    for p in prange(2 * lmax + 1):
        spherical_hankel[p, :, :, :] = np.sqrt(
            np.divide(
                np.pi / 2,
                size_parameter,
                out=np.zeros_like(size_parameter),
                where=size_parameter != 0,
            )
        ) * hankel1(p + 1 / 2, size_parameter)
        spherical_bessel[p, :, :, :] = spherical_jn(p, size_parameter)
        e_j_dm_phi[p, :, :] = np.exp(1j * (p - 2 * lmax) * phi)
        e_j_dm_phi[p + 2 * lmax, :, :] = np.exp(1j * p * phi)
        for absdm in range(p + 1):
            cml = np.sqrt(
                (2 * p + 1) / 2 / np.prod(np.arange(p - absdm + 1, p + absdm + 1))
            )
            p_lm[p * (p + 1) // 2 + absdm, :, :] = (
                cml * np.power(-1.0, absdm) * lpmv(absdm, p, cosine_theta)
            )

    return spherical_bessel, spherical_hankel, e_j_dm_phi, p_lm

compute_field

Compute the field using the given parameters and coefficients.

Parameters:

Name Type Description Default
lmax int

The maximum degree of the spherical harmonics.

required
idx ndarray

The index array containing the values of s, n, tau, l, and m.

required
size_parameter ndarray

The size parameter array.

required
sph_h ndarray

The spherical harmonics array.

required
derivative ndarray

The derivative array.

required
e_j_dm_phi ndarray

The e_j_dm_phi array.

required
p_lm ndarray

The p_lm array.

required
pi_lm ndarray

The pi_lm array.

required
tau_lm ndarray

The tau_lm array.

required
e_r ndarray

The e_r array.

required
e_theta ndarray

The e_theta array.

required
e_phi ndarray

The e_phi array.

required
scattered_field_coefficients ndarray

The scattered field coefficients array. Defaults to None.

None
initial_field_coefficients ndarray

The initial field coefficients array. Defaults to None.

None
scatter_to_internal ndarray

The scatter to internal array. Defaults to None.

None

Returns:

Name Type Description
field ndarray

The computed field array.

Source code in yasfpy/functions/cpu_numba.py
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
@jit(nopython=True, parallel=True, nogil=True, fastmath=True, cache=True)
def compute_field(
    lmax: int,
    idx: np.ndarray,
    size_parameter: np.ndarray,
    sph_h: np.ndarray,
    derivative: np.ndarray,
    e_j_dm_phi: np.ndarray,
    p_lm: np.ndarray,
    pi_lm: np.ndarray,
    tau_lm: np.ndarray,
    e_r: np.ndarray,
    e_theta: np.ndarray,
    e_phi: np.ndarray,
    scattered_field_coefficients: np.ndarray = None,
    initial_field_coefficients: np.ndarray = None,
    scatter_to_internal: np.ndarray = None,
):
    """
    Compute the field using the given parameters and coefficients.

    Parameters:
        lmax (int): The maximum degree of the spherical harmonics.
        idx (np.ndarray): The index array containing the values of s, n, tau, l, and m.
        size_parameter (np.ndarray): The size parameter array.
        sph_h (np.ndarray): The spherical harmonics array.
        derivative (np.ndarray): The derivative array.
        e_j_dm_phi (np.ndarray): The e_j_dm_phi array.
        p_lm (np.ndarray): The p_lm array.
        pi_lm (np.ndarray): The pi_lm array.
        tau_lm (np.ndarray): The tau_lm array.
        e_r (np.ndarray): The e_r array.
        e_theta (np.ndarray): The e_theta array.
        e_phi (np.ndarray): The e_phi array.
        scattered_field_coefficients (np.ndarray, optional): The scattered field coefficients array. Defaults to None.
        initial_field_coefficients (np.ndarray, optional): The initial field coefficients array. Defaults to None.
        scatter_to_internal (np.ndarray, optional): The scatter to internal array. Defaults to None.

    Returns:
        field (np.ndarray): The computed field array.
    """
    jmax = sph_h.shape[1] * 2 * lmax * (lmax + 2)
    channels = sph_h.shape[-1]

    field = np.zeros(channels * sph_h.shape[2] * 3, dtype=complex128).reshape(
        (channels, sph_h.shape[2], 3)
    )

    if (scattered_field_coefficients is None) and (initial_field_coefficients is None):
        print(
            "At least one, scattered field or initial field coefficients, need to be given."
        )
        print("Returning a zero array")
        return field

    for w_idx in prange(2 * lmax * (lmax + 2) * np.prod(np.array(sph_h.shape[1:]))):
        w = w_idx % channels
        j_idx = w_idx // channels
        sampling_idx = j_idx // jmax
        j_idx = j_idx % jmax
        s, n, tau, l, m = idx[j_idx, :]

        invariant = (
            1 / np.sqrt(2 * (l + 1) * l) * e_j_dm_phi[m + 2 * lmax, s, sampling_idx]
        )
        # Calculate M
        if tau == 1:
            c_term_1 = (
                1j
                * m
                * pi_lm[l, np.abs(m), s, sampling_idx]
                * e_theta[s, sampling_idx, :]
            )
            c_term_2 = tau_lm[l, np.abs(m), s, sampling_idx] * e_phi[s, sampling_idx, :]
            c_term = sph_h[l, s, sampling_idx, w] * (c_term_1 - c_term_2)

            field[w, sampling_idx, :] += (
                scattered_field_coefficients[s, n, w] * invariant * c_term
            )
        # Calculate N
        else:
            p_term = (
                l
                * (l + 1)
                / size_parameter[s, sampling_idx, w]
                * sph_h[l, s, sampling_idx, w]
                * p_lm[l, np.abs(m), s, sampling_idx]
                * e_r[s, sampling_idx, :]
            )
            #   p_term = l * (l + 1) / size_parameter[s, sampling_idx, w]
            #   p_term *= sph_h[l, s, sampling_idx, w]
            #   p_term *= p_lm[l, np.abs(m), s, sampling_idx]
            #   p_term *= e_r[s, sampling_idx, :]

            b_term_1 = (
                derivative[l, s, sampling_idx, w] / size_parameter[s, sampling_idx, w]
            )
            b_term_2 = (
                tau_lm[l, np.abs(m), s, sampling_idx] * e_theta[s, sampling_idx, :]
            )
            b_term_3 = (
                1j
                * m
                * pi_lm[l, np.abs(m), s, sampling_idx]
                * e_phi[s, sampling_idx, :]
            )
            b_term = b_term_1 * (b_term_2 + b_term_3)

            field[w, sampling_idx, :] += (
                scattered_field_coefficients[s, n, w] * invariant * (p_term + b_term)
            )

    return field

Comments