Skip to content

Cuda Numba

particle_interaction_gpu

Perform particle interaction calculations on the GPU.

Parameters:

Name Type Description Default
lmax int

Maximum angular momentum quantum number.

required
particle_number int

Number of particles.

required
idx ndarray

Array containing particle indices.

required
x ndarray

Array of particle positions.

required
wx_real ndarray

Array to store the real part of the result.

required
wx_imag ndarray

Array to store the imaginary part of the result.

required
translation_table ndarray

Array containing translation table.

required
plm ndarray

Array containing associated Legendre polynomials.

required
sph_h ndarray

Array containing spherical harmonics.

required
e_j_dm_phi ndarray

Additional parameter for the calculation.

required
Todo

Implement data batching for GPUs with smaller memory

Source code in yasfpy/functions/cuda_numba.py
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
@cuda.jit(fastmath=True)
def particle_interaction_gpu(
    lmax: int,
    particle_number: int,
    idx: np.ndarray,
    x: np.ndarray,
    wx_real: np.ndarray,
    wx_imag: np.ndarray,
    translation_table: np.ndarray,
    plm: np.ndarray,
    sph_h: np.ndarray,
    e_j_dm_phi,
):
    """
    Perform particle interaction calculations on the GPU.

    Args:
        lmax (int): Maximum angular momentum quantum number.
        particle_number (int): Number of particles.
        idx (np.ndarray): Array containing particle indices.
        x (np.ndarray): Array of particle positions.
        wx_real (np.ndarray): Array to store the real part of the result.
        wx_imag (np.ndarray): Array to store the imaginary part of the result.
        translation_table (np.ndarray): Array containing translation table.
        plm (np.ndarray): Array containing associated Legendre polynomials.
        sph_h (np.ndarray): Array containing spherical harmonics.
        e_j_dm_phi (np.ndarray): Additional parameter for the calculation.

    Todo:
        Implement data batching for GPUs with smaller memory
    """
    j1, j2, w = cuda.grid(3)

    jmax = particle_number * 2 * lmax * (lmax + 2)
    channels = sph_h.shape[-1]

    if (j1 >= jmax) or (j2 >= jmax) or (w >= channels):
        return

    s1, n1, tau1, l1, m1 = idx[j1, :]
    s2, n2, tau2, l2, m2 = idx[j2, :]

    if s1 == s2:
        return

    delta_tau = abs(tau1 - tau2)
    delta_l = abs(l1 - l2)
    delta_m = abs(m1 - m2)

    p_dependent = complex(0)
    for p in range(max(delta_m, delta_l + delta_tau), l1 + l2 + 1):
        p_dependent += (
            translation_table[n2, n1, p]
            * plm[p * (p + 1) // 2 + delta_m, s1, s2]
            * sph_h[p, s1, s2, w]
        )
    p_dependent *= e_j_dm_phi[m2 - m1 + 2 * lmax, s1, s2] * x[j2]

    # atomic.add performs the += operation in sync
    cuda.atomic.add(wx_real, (j1, w), p_dependent.real)
    cuda.atomic.add(wx_imag, (j1, w), p_dependent.imag)

compute_scattering_cross_section_gpu

Compute the scattering cross section on the GPU using CUDA.

Parameters:

Name Type Description Default
lmax int

The maximum degree of the spherical harmonics expansion.

required
particle_number int

The number of particles.

required
idx ndarray

The index array.

required
sfc ndarray

The scattering form factor array.

required
translation_table ndarray

The translation table array.

required
plm ndarray

The associated Legendre polynomials array.

required
sph_h ndarray

The spherical harmonics array.

required
e_j_dm_phi ndarray

The phase factor array.

required
c_sca_real ndarray

The real part of the scattering cross section array.

required
c_sca_imag ndarray

The imaginary part of the scattering cross section array.

required
Source code in yasfpy/functions/cuda_numba.py
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
@cuda.jit(fastmath=True)
def compute_scattering_cross_section_gpu(
    lmax: int,
    particle_number: int,
    idx: np.ndarray,
    sfc: np.ndarray,
    translation_table: np.ndarray,
    plm: np.ndarray,
    sph_h: np.ndarray,
    e_j_dm_phi: np.ndarray,
    c_sca_real: np.ndarray,
    c_sca_imag: np.ndarray,
):
    """
    Compute the scattering cross section on the GPU using CUDA.

    Args:
        lmax (int): The maximum degree of the spherical harmonics expansion.
        particle_number (int): The number of particles.
        idx (np.ndarray): The index array.
        sfc (np.ndarray): The scattering form factor array.
        translation_table (np.ndarray): The translation table array.
        plm (np.ndarray): The associated Legendre polynomials array.
        sph_h (np.ndarray): The spherical harmonics array.
        e_j_dm_phi (np.ndarray): The phase factor array.
        c_sca_real (np.ndarray): The real part of the scattering cross section array.
        c_sca_imag (np.ndarray): The imaginary part of the scattering cross section array.
    """
    jmax = particle_number * 2 * lmax * (lmax + 2)
    channels = sph_h.shape[-1]

    j1, j2, w = cuda.grid(3)

    if (j1 >= jmax) or (j2 >= jmax) or (w >= channels):
        return

    s1, n1, _, _, m1 = idx[j1, :]
    s2, n2, _, _, m2 = idx[j2, :]

    delta_m = abs(m1 - m2)

    p_dependent = complex(0)
    # for p in range(delta_m, 2 * lmax + 1):
    for p in range(delta_m, m1 + m2 + 1):
        p_dependent += (
            # translation_table[n2, n1, p]
            translation_table[n1, n2, p]
            * plm[p * (p + 1) // 2 + delta_m, s1, s2]
            * sph_h[p, s1, s2, w]
        )
    p_dependent *= (
        sfc[s1, n1, w].conjugate()
        * e_j_dm_phi[m1 - m2 + 2 * lmax, s1, s2]
        * sfc[s2, n2, w]
    )

    # atomic.add performs the += operation in sync
    cuda.atomic.add(c_sca_real, (j1, w), p_dependent.real)
    cuda.atomic.add(c_sca_imag, (j1, w), p_dependent.imag)

compute_radial_independent_scattered_field_gpu

Compute the radial independent scattered field using GPU acceleration.

Parameters:

Name Type Description Default
lmax int

The maximum degree of the spherical harmonics expansion.

required
particles_position ndarray

Array of particle positions.

required
idx ndarray

Array of indices for particle properties.

required
sfc ndarray

Array of scattering form factors.

required
k_medium ndarray

Array of wave numbers in the medium.

required
azimuthal_angles ndarray

Array of azimuthal angles.

required
e_r ndarray

Array of radial electric field components.

required
e_phi ndarray

Array of azimuthal electric field components.

required
e_theta ndarray

Array of polar electric field components.

required
pilm ndarray

Array of associated Legendre polynomials.

required
taulm ndarray

Array of tau coefficients.

required
e_1_sca_real ndarray

Array of real parts of the scattered electric field.

required
e_1_sca_imag ndarray

Array of imaginary parts of the scattered electric field.

required
Source code in yasfpy/functions/cuda_numba.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
@cuda.jit(fastmath=True)
def compute_radial_independent_scattered_field_gpu(
    lmax: int,
    particles_position: np.ndarray,
    idx: np.ndarray,
    sfc: np.ndarray,
    k_medium: np.ndarray,
    azimuthal_angles: np.ndarray,
    e_r: np.ndarray,
    e_phi: np.ndarray,
    e_theta: np.ndarray,
    pilm: np.ndarray,
    taulm: np.ndarray,
    e_1_sca_real: np.ndarray,
    e_1_sca_imag: np.ndarray,
):
    """
    Compute the radial independent scattered field using GPU acceleration.

    Args:
        lmax (int): The maximum degree of the spherical harmonics expansion.
        particles_position (np.ndarray): Array of particle positions.
        idx (np.ndarray): Array of indices for particle properties.
        sfc (np.ndarray): Array of scattering form factors.
        k_medium (np.ndarray): Array of wave numbers in the medium.
        azimuthal_angles (np.ndarray): Array of azimuthal angles.
        e_r (np.ndarray): Array of radial electric field components.
        e_phi (np.ndarray): Array of azimuthal electric field components.
        e_theta (np.ndarray): Array of polar electric field components.
        pilm (np.ndarray): Array of associated Legendre polynomials.
        taulm (np.ndarray): Array of tau coefficients.
        e_1_sca_real (np.ndarray): Array of real parts of the scattered electric field.
        e_1_sca_imag (np.ndarray): Array of imaginary parts of the scattered electric field.
    """
    j_idx, a_idx, w_idx = cuda.grid(3)

    jmax = particles_position.shape[0] * 2 * lmax * (lmax + 2)

    if (j_idx >= jmax) or (a_idx >= azimuthal_angles.size) or (w_idx >= k_medium.size):
        return

    s, n, tau, l, m = idx[j_idx, :]

    # Temporary variable
    # If tau = 1 -> 1j**(tau-1) = 1, if tau = 2 -> 1j**(tau-1) = 1j
    # 1j**(-l-1) = (-1j)**(l+1) => both lead to the coefficient 1j**(tau-l-2)
    # k * <particle_position, e_r> is the phase shift due to the distance and relative position
    t = (
        1j ** (tau - l - 2)
        * sfc[s, n, w_idx]
        / sqrt(2 * l * (l + 1))
        * exp(
            1j
            * (
                m * azimuthal_angles[a_idx]
                - k_medium[w_idx]
                * (
                    particles_position[s, 0] * e_r[a_idx, 0]
                    + particles_position[s, 1] * e_r[a_idx, 1]
                    + particles_position[s, 2] * e_r[a_idx, 2]
                )
            )
        )
    )

    for c in range(3):
        if tau == 1:
            e_1_sca = t * (
                e_theta[a_idx, c] * pilm[l, abs(m), a_idx] * 1j * m
                - e_phi[a_idx, c] * taulm[l, abs(m), a_idx]
            )
        else:
            e_1_sca = t * (
                e_phi[a_idx, c] * pilm[l, abs(m), a_idx] * 1j * m
                + e_theta[a_idx, c] * taulm[l, abs(m), a_idx]
            )

        cuda.atomic.add(e_1_sca_real, (a_idx, c, w_idx), e_1_sca.real)
        cuda.atomic.add(e_1_sca_imag, (a_idx, c, w_idx), e_1_sca.imag)

compute_electric_field_angle_components_gpu

Compute the electric field angle components on the GPU.

Parameters:

Name Type Description Default
lmax int

The maximum angular momentum quantum number.

required
particles_position ndarray

Array of particle positions.

required
idx ndarray

Array of indices.

required
sfc ndarray

Array of scattering form factors.

required
k_medium ndarray

Array of medium wavevectors.

required
azimuthal_angles ndarray

Array of azimuthal angles.

required
e_r ndarray

Array of radial unit vectors.

required
pilm ndarray

Array of associated Legendre polynomials.

required
taulm ndarray

Array of tau coefficients.

required
e_field_theta_real ndarray

Array of real parts of electric field theta component.

required
e_field_theta_imag ndarray

Array of imaginary parts of electric field theta component.

required
e_field_phi_real ndarray

Array of real parts of electric field phi component.

required
e_field_phi_imag ndarray

Array of imaginary parts of electric field phi component.

required
Source code in yasfpy/functions/cuda_numba.py
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
@cuda.jit(fastmath=True)
def compute_electric_field_angle_components_gpu(
    lmax: int,
    particles_position: np.ndarray,
    idx: np.ndarray,
    sfc: np.ndarray,
    k_medium: np.ndarray,
    azimuthal_angles: np.ndarray,
    e_r: np.ndarray,
    pilm: np.ndarray,
    taulm: np.ndarray,
    e_field_theta_real: np.ndarray,
    e_field_theta_imag: np.ndarray,
    e_field_phi_real: np.ndarray,
    e_field_phi_imag: np.ndarray,
):
    """
    Compute the electric field angle components on the GPU.

    Args:
        lmax (int): The maximum angular momentum quantum number.
        particles_position (np.ndarray): Array of particle positions.
        idx (np.ndarray): Array of indices.
        sfc (np.ndarray): Array of scattering form factors.
        k_medium (np.ndarray): Array of medium wavevectors.
        azimuthal_angles (np.ndarray): Array of azimuthal angles.
        e_r (np.ndarray): Array of radial unit vectors.
        pilm (np.ndarray): Array of associated Legendre polynomials.
        taulm (np.ndarray): Array of tau coefficients.
        e_field_theta_real (np.ndarray): Array of real parts of electric field theta component.
        e_field_theta_imag (np.ndarray): Array of imaginary parts of electric field theta component.
        e_field_phi_real (np.ndarray): Array of real parts of electric field phi component.
        e_field_phi_imag (np.ndarray): Array of imaginary parts of electric field phi component.
    """
    j_idx, a_idx, w_idx = cuda.grid(3)
    jmax = particles_position.shape[0] * 2 * lmax * (lmax + 2)
    if (j_idx >= jmax) or (a_idx >= azimuthal_angles.size) or (w_idx >= k_medium.size):
        return

    s, n, tau, l, m = idx[j_idx, :]

    t = (
        1j ** (tau - l - 2)
        * sfc[s, n, w_idx]
        / sqrt(2 * l * (l + 1))
        * exp(
            1j
            * (
                m * azimuthal_angles[a_idx]
                - k_medium[w_idx]
                * (
                    particles_position[s, 0] * e_r[a_idx, 0]
                    + particles_position[s, 1] * e_r[a_idx, 1]
                    + particles_position[s, 2] * e_r[a_idx, 2]
                )
            )
        )
    )

    if tau == 1:
        e_field_theta = t * pilm[l, abs(m), a_idx] * 1j * m
        e_field_phi = -t * taulm[l, abs(m), a_idx]
    else:
        e_field_theta = t * taulm[l, abs(m), a_idx]
        e_field_phi = t * pilm[l, abs(m), a_idx] * 1j * m

    cuda.atomic.add(e_field_theta_real, (a_idx, w_idx), e_field_theta.real)
    cuda.atomic.add(e_field_theta_imag, (a_idx, w_idx), e_field_theta.imag)
    cuda.atomic.add(e_field_phi_real, (a_idx, w_idx), e_field_phi.real)
    cuda.atomic.add(e_field_phi_imag, (a_idx, w_idx), e_field_phi.imag)

compute_polarization_components_gpu

Compute the polarization components using GPU acceleration.

Parameters:

Name Type Description Default
number_of_wavelengths int

Number of wavelengths.

required
number_of_angles int

Number of angles.

required
e_field_theta_real ndarray

Real part of the electric field in the theta direction.

required
e_field_theta_imag ndarray

Imaginary part of the electric field in the theta direction.

required
e_field_phi_real ndarray

Real part of the electric field in the phi direction.

required
e_field_phi_imag ndarray

Imaginary part of the electric field in the phi direction.

required
intensity ndarray

Array to store the intensity component.

required
degree_of_polarization ndarray

Array to store the degree of polarization component.

required
degree_of_linear_polarization ndarray

Array to store the degree of linear polarization component.

required
degree_of_linear_polarization_q ndarray

Array to store the degree of linear polarization (Q) component.

required
degree_of_linear_polarization_u ndarray

Array to store the degree of linear polarization (U) component.

required
degree_of_circular_polarization ndarray

Array to store the degree of circular polarization component.

required
Source code in yasfpy/functions/cuda_numba.py
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
@cuda.jit(fastmath=True)
def compute_polarization_components_gpu(
    number_of_wavelengths: int,
    number_of_angles: int,
    e_field_theta_real: np.ndarray,
    e_field_theta_imag: np.ndarray,
    e_field_phi_real: np.ndarray,
    e_field_phi_imag: np.ndarray,
    intensity: np.ndarray,
    degree_of_polarization: np.ndarray,
    degree_of_linear_polarization: np.ndarray,
    degree_of_linear_polarization_q: np.ndarray,
    degree_of_linear_polarization_u: np.ndarray,
    degree_of_circular_polarization: np.ndarray,
):
    """
    Compute the polarization components using GPU acceleration.

    Args:
        number_of_wavelengths (int): Number of wavelengths.
        number_of_angles (int): Number of angles.
        e_field_theta_real (np.ndarray): Real part of the electric field in the theta direction.
        e_field_theta_imag (np.ndarray): Imaginary part of the electric field in the theta direction.
        e_field_phi_real (np.ndarray): Real part of the electric field in the phi direction.
        e_field_phi_imag (np.ndarray): Imaginary part of the electric field in the phi direction.
        intensity (np.ndarray): Array to store the intensity component.
        degree_of_polarization (np.ndarray): Array to store the degree of polarization component.
        degree_of_linear_polarization (np.ndarray): Array to store the degree of linear polarization component.
        degree_of_linear_polarization_q (np.ndarray): Array to store the degree of linear polarization (Q) component.
        degree_of_linear_polarization_u (np.ndarray): Array to store the degree of linear polarization (U) component.
        degree_of_circular_polarization (np.ndarray): Array to store the degree of circular polarization component.
    """
    a_idx, w_idx = cuda.grid(2)
    if (w_idx >= number_of_wavelengths) or (a_idx >= number_of_angles):
        return

    # Jones vector components (1,2,4)
    e_field_theta_abs = (
        e_field_theta_real[a_idx, w_idx] ** 2 + e_field_theta_imag[a_idx, w_idx] ** 2
    )
    e_field_phi_abs = (
        e_field_phi_real[a_idx, w_idx] ** 2 + e_field_phi_imag[a_idx, w_idx] ** 2
    )
    e_field_angle_interaction_real = (
        e_field_theta_real[a_idx, w_idx] * e_field_phi_real[a_idx, w_idx]
        + e_field_theta_imag[a_idx, w_idx] * e_field_phi_imag[a_idx, w_idx]
    )
    e_field_angle_interaction_imag = (
        e_field_theta_imag[a_idx, w_idx] * e_field_phi_real[a_idx, w_idx]
        - e_field_theta_real[a_idx, w_idx] * e_field_phi_imag[a_idx, w_idx]
    )

    # Stokes components S = (I, Q, U, V)
    I = e_field_theta_abs + e_field_phi_abs
    Q = e_field_theta_abs - e_field_phi_abs
    U = -2 * e_field_angle_interaction_real
    V = 2 * e_field_angle_interaction_imag

    intensity[a_idx, w_idx] = I
    degree_of_polarization[a_idx, w_idx] = sqrt(Q**2 + U**2 + V**2).real / I
    degree_of_linear_polarization[a_idx, w_idx] = sqrt(Q**2 + U**2).real / I
    degree_of_linear_polarization_q[a_idx, w_idx] = -Q.real / I
    degree_of_linear_polarization_u[a_idx, w_idx] = U.real / I
    degree_of_circular_polarization[a_idx, w_idx] = V / I

compute_field_gpu

Compute the field on the GPU using CUDA.

Parameters:

Name Type Description Default
lmax int

Maximum degree of the spherical harmonics.

required
idx ndarray

Array of indices.

required
size_parameter ndarray

Array of size parameters.

required
sph_h ndarray

Array of spherical harmonics.

required
derivative ndarray

Array of derivatives.

required
e_j_dm_phi ndarray

Array of phi-dependent terms.

required
p_lm ndarray

Array of Legendre polynomials.

required
pi_lm ndarray

Array of pi-dependent terms.

required
tau_lm ndarray

Array of tau-dependent terms.

required
e_r ndarray

Array of r-dependent terms.

required
e_theta ndarray

Array of theta-dependent terms.

required
e_phi ndarray

Array of phi-dependent terms.

required
scattered_field_coefficients ndarray

Array of scattered field coefficients.

required
field_real ndarray

Array to store the real part of the field.

required
field_imag ndarray

Array to store the imaginary part of the field.

required
Source code in yasfpy/functions/cuda_numba.py
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
@cuda.jit(fastmath=True)
def compute_field_gpu(
    lmax: int,
    idx: np.ndarray,
    size_parameter: np.ndarray,
    sph_h: np.ndarray,
    derivative: np.ndarray,
    e_j_dm_phi: np.ndarray,
    p_lm: np.ndarray,
    pi_lm: np.ndarray,
    tau_lm: np.ndarray,
    e_r: np.ndarray,
    e_theta: np.ndarray,
    e_phi: np.ndarray,
    scattered_field_coefficients: np.ndarray,
    field_real: np.ndarray,
    field_imag: np.ndarray,
):  # , initial_field_coefficients: np.ndarray, scatter_to_internal: np.ndarray):
    """
    Compute the field on the GPU using CUDA.

    Args:
        lmax (int): Maximum degree of the spherical harmonics.
        idx (np.ndarray): Array of indices.
        size_parameter (np.ndarray): Array of size parameters.
        sph_h (np.ndarray): Array of spherical harmonics.
        derivative (np.ndarray): Array of derivatives.
        e_j_dm_phi (np.ndarray): Array of phi-dependent terms.
        p_lm (np.ndarray): Array of Legendre polynomials.
        pi_lm (np.ndarray): Array of pi-dependent terms.
        tau_lm (np.ndarray): Array of tau-dependent terms.
        e_r (np.ndarray): Array of r-dependent terms.
        e_theta (np.ndarray): Array of theta-dependent terms.
        e_phi (np.ndarray): Array of phi-dependent terms.
        scattered_field_coefficients (np.ndarray): Array of scattered field coefficients.
        field_real (np.ndarray): Array to store the real part of the field.
        field_imag (np.ndarray): Array to store the imaginary part of the field.
    """
    jmax = sph_h.shape[1] * 2 * lmax * (lmax + 2)
    channels = sph_h.shape[-1]

    sampling_idx, j_idx, w = cuda.grid(3)

    if (sampling_idx >= sph_h.shape[2]) or (j_idx >= jmax) or (w >= channels):
        return

    particle_idx, n, tau, l, m = idx[j_idx, :]

    invariant = (
        1 / sqrt(2 * (l + 1) * l) * e_j_dm_phi[m + 2 * lmax, particle_idx, sampling_idx]
    )

    for c in range(3):
        term = scattered_field_coefficients[particle_idx, n, w] * invariant

        # Calculate M
        if tau == 1:
            c_term_1 = (
                pi_lm[l, abs(m), particle_idx, sampling_idx]
                * e_theta[particle_idx, sampling_idx, c]
                * 1j
                * m
            )
            c_term_2 = (
                tau_lm[l, abs(m), particle_idx, sampling_idx]
                * e_phi[particle_idx, sampling_idx, c]
            )
            c_term = sph_h[l, particle_idx, sampling_idx, w] * (c_term_1 - c_term_2)

            term *= c_term

        # Calculate N
        else:
            p_term = (
                l
                * (l + 1)
                / size_parameter[particle_idx, sampling_idx, w]
                * sph_h[l, particle_idx, sampling_idx, w]
            )
            p_term *= (
                p_lm[l, abs(m), particle_idx, sampling_idx]
                * e_r[particle_idx, sampling_idx, c]
            )

            b_term_1 = (
                derivative[l, particle_idx, sampling_idx, w]
                / size_parameter[particle_idx, sampling_idx, w]
            )
            b_term_2 = (
                tau_lm[l, abs(m), particle_idx, sampling_idx]
                * e_theta[particle_idx, sampling_idx, c]
            )
            b_term_3 = (
                pi_lm[l, abs(m), particle_idx, sampling_idx]
                * e_phi[particle_idx, sampling_idx, c]
                * 1j
                * m
            )
            b_term = b_term_1 * (b_term_2 + b_term_3)

            term *= p_term + b_term

        cuda.atomic.add(field_real, (w, sampling_idx, c), term.real)
        cuda.atomic.add(field_imag, (w, sampling_idx, c), term.imag)

Comments