Skip to content

Numerics

Numerics

The Numerics class is used for numerical computations in the YASF (Yet Another Scattering Framework) library, providing methods for computing associated Legendre polynomials, translation tables, Fibonacci sphere points, and spherical unity vectors.

The __init__ function initializes the Numerics class with various parameters and sets up the necessary attributes.

Parameters:

Name Type Description Default
lmax int

The maximum degree of the spherical harmonics expansion.

required
sampling_points_number Union[int, ndarray]

The sampling_points_number parameter specifies the number of sampling points on the unit sphere. It can be either an integer or a numpy array. If it is an integer, it represents the total number of sampling points. If it is a numpy array, it can have one or two dimensions. If

100
polar_angles ndarray

An array containing the polar angles of the sampling points on the unit sphere.

None
polar_weight_func Callable

The polar_weight_func parameter is a callable function that takes a single argument x and returns a value. This function is used as a weight function for the polar angles of the sampling points on the unit sphere. By default, it is set to lambda x: x, which

lambda x: x
azimuthal_angles ndarray

An array containing the azimuthal angles of the sampling points on the unit sphere.

None
gpu bool

A flag indicating whether to use GPU acceleration. If set to True, the computations will be performed on a GPU if available. If set to False, the computations will be performed on the CPU.

False
particle_distance_resolution float

The parameter "particle_distance_resolution" represents the resolution of the particle distance. It determines the accuracy of the numerical computations related to particle distances in the code. The value of this parameter is set to 10.0 by default.

10.0
solver Solver

The solver parameter is an optional argument that specifies the solver to use for the numerical computations. It is used to solve the scattering problem and obtain the scattering amplitudes. If no solver is provided, the default solver will be used.

None
Source code in yasfpy/numerics.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
def __init__(
    self,
    lmax: int,
    sampling_points_number: Union[int, np.ndarray] = 100,
    polar_angles: np.ndarray = None,
    polar_weight_func: Callable = lambda x: x,
    azimuthal_angles: np.ndarray = None,
    gpu: bool = False,
    particle_distance_resolution=10.0,
    solver=None,
):
    """The `__init__` function initializes the Numerics class with various parameters and sets up the
    necessary attributes.

    Args:
        lmax (int): The maximum degree of the spherical harmonics expansion.
        sampling_points_number (Union[int, np.ndarray], optional): The `sampling_points_number` parameter specifies the number of sampling points on the unit
            sphere. It can be either an integer or a numpy array. If it is an integer, it represents the
            total number of sampling points. If it is a numpy array, it can have one or two dimensions. If
        polar_angles (np.ndarray): An array containing the polar angles of the sampling points on the unit sphere.
        polar_weight_func (Callable): The `polar_weight_func` parameter is a callable function that takes a single argument `x` and
            returns a value. This function is used as a weight function for the polar angles of the sampling
            points on the unit sphere. By default, it is set to `lambda x: x`, which
        azimuthal_angles (np.ndarray): An array containing the azimuthal angles of the sampling points on the unit sphere.
        gpu (bool, optional): A flag indicating whether to use GPU acceleration. If set to True, the computations will be
            performed on a GPU if available. If set to False, the computations will be performed on the CPU.
        particle_distance_resolution (float): The parameter "particle_distance_resolution" represents the resolution of the particle
            distance. It determines the accuracy of the numerical computations related to particle distances
            in the code. The value of this parameter is set to 10.0 by default.
        solver (Solver): The `solver` parameter is an optional argument that specifies the solver to use for the
            numerical computations. It is used to solve the scattering problem and obtain the scattering
            amplitudes. If no solver is provided, the default solver will be used.

    """
    # self.log = log.scattering_logger(__name__)
    self.log = logging.getLogger(self.__class__.__module__)
    self.lmax = lmax

    self.sampling_points_number = np.squeeze(sampling_points_number)

    if (polar_angles is None) or (azimuthal_angles is None):
        if self.sampling_points_number.size == 0:
            self.sampling_points_number = np.array([100])
            self.log.warning(
                "Number of sampling points cant be an empty array. Reverting to 100 points (Fibonacci sphere)."
            )
        elif self.sampling_points_number.size > 2:
            self.sampling_points_number = np.array([sampling_points_number[0]])
            self.log.warning(
                "Number of sampling points with more than two dimensions is not supported. Reverting to the first element in the provided array (Fibonacci sphere)."
            )

        if self.sampling_points_number.size == 1:
            (
                _,
                polar_angles,
                azimuthal_angles,
            ) = Numerics.compute_fibonacci_sphere_points(sampling_points_number[0])
        elif self.sampling_points_number.size == 2:
            # if polar_weight_func is None:
            #   polar_weight_func = lambda x: x
            self.polar_angles_linspace = np.pi * polar_weight_func(
                np.linspace(0, 1, sampling_points_number[1])
            )
            self.azimuthal_angles_linspace = (
                2 * np.pi * np.linspace(0, 1, sampling_points_number[0] + 1)[:-1]
            )

            polar_angles, azimuthal_angles = np.meshgrid(
                self.polar_angles_linspace,
                self.azimuthal_angles_linspace,
                indexing="xy",
            )

            polar_angles = polar_angles.ravel()
            azimuthal_angles = azimuthal_angles.ravel()

    else:
        self.sampling_points_number = None

    self.polar_angles = polar_angles
    self.azimuthal_angles = azimuthal_angles
    self.gpu = gpu
    self.particle_distance_resolution = particle_distance_resolution
    self.solver = solver

    if self.gpu:
        from numba import cuda

        if not cuda.is_available():
            self.log.warning(
                "No supported GPU in numba detected! Falling back to the CPU implementation."
            )
            self.gpu = False

    self.__setup()

log = logging.getLogger(self.__class__.__module__) instance-attribute

lmax = lmax instance-attribute

sampling_points_number = np.squeeze(sampling_points_number) instance-attribute

polar_angles_linspace = np.pi * polar_weight_func(np.linspace(0, 1, sampling_points_number[1])) instance-attribute

azimuthal_angles_linspace = 2 * np.pi * np.linspace(0, 1, sampling_points_number[0] + 1)[:-1] instance-attribute

polar_angles = polar_angles instance-attribute

azimuthal_angles = azimuthal_angles instance-attribute

gpu = gpu instance-attribute

particle_distance_resolution = particle_distance_resolution instance-attribute

solver = solver instance-attribute

__compute_nmax

The function computes the maximum number of coefficients based on the values of lmax.

Source code in yasfpy/numerics.py
120
121
122
123
124
def __compute_nmax(self):
    """
    The function computes the maximum number of coefficients based on the values of lmax.
    """
    self.nmax = 2 * self.lmax * (self.lmax + 2)

__plm_coefficients

The function computes the coefficients for the associated Legendre polynomials using the sympy library.

Source code in yasfpy/numerics.py
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def __plm_coefficients(self):
    """
    The function computes the coefficients for the associated Legendre polynomials using the sympy
    library.
    """
    import sympy as sym

    self.plm_coeff_table = np.zeros(
        (2 * self.lmax + 1, 2 * self.lmax + 1, self.lmax + 1)
    )

    ct = sym.Symbol("ct")
    st = sym.Symbol("st")
    plm = legendre_normalized_trigon(2 * self.lmax, ct, y=st)

    for l in range(2 * self.lmax + 1):
        for m in range(l + 1):
            cf = sym.poly(plm[l, m], ct, st).coeffs()
            self.plm_coeff_table[l, m, 0 : len(cf)] = cf

__setup

The function performs the setup for numerical computations.

Source code in yasfpy/numerics.py
146
147
148
def __setup(self):
    """The function performs the setup for numerical computations."""
    self.__compute_nmax()

compute_plm_coefficients

The function computes the coefficients for the associated Legendre polynomials.

Source code in yasfpy/numerics.py
152
153
154
155
156
def compute_plm_coefficients(self):
    """
    The function computes the coefficients for the associated Legendre polynomials.
    """
    self.__plm_coefficients()

compute_translation_table

The function computes a translation table using Wigner 3j symbols and stores the results in a numpy array.

Source code in yasfpy/numerics.py
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
def compute_translation_table(self, force_compute=False):
    """
    The function computes a translation table using Wigner 3j symbols and stores the results in a
    numpy array.
    """

    # dpath = Path(f"{files(__package__) / 'data'}")
    dpath = Path.home() / ".cache" / "yasfpy" / self.__class__.__name__
    if not os.path.exists(dpath):
        os.makedirs(dpath)

    if os.path.isfile(dpath / f"lmax{self.lmax}.pickle") and not force_compute:
        data_raw = dpath.joinpath(Path(f"lmax{self.lmax}.pickle")).read_bytes()
        data = pickle.loads(data_raw)
        self.translation_ab5 = data["wig"]
        self.log.info("Found translation table and loaded it!")
    else:
        if not force_compute:
            self.log.warning(
                f"Didnt find translation_ab5 table in specified directory: {dpath}"
            )

        self.log.info("Computing the translation table")
        jmax = jmult_max(1, self.lmax)
        self.translation_ab5 = np.zeros(
            (jmax, jmax, 2 * self.lmax + 1), dtype=complex
        )

        # No idea why or how this value for max_two_j works,
        # but got it through trial and error.
        # If you get any Wigner errors, change this value (e.g. 4*lmax or lmax**2)
        max_two_j = 3 * self.lmax + 1
        wig.wig_table_init(max_two_j, 3)
        wig.wig_temp_init(max_two_j)

        # Could be paralilized around jmax^2!
        # Speed-up using the index lookup table (compute_idx_lookups) instead of single_index2multi.
        for j in range(0, jmax**2):
            j1 = j // jmax
            j2 = j % jmax
            _, tau1, l1, m1 = single_index2multi(j1, self.lmax)
            _, tau2, l2, m2 = single_index2multi(j2, self.lmax)
            for p in range(0, 2 * self.lmax + 1):
                if tau1 == tau2:
                    self.translation_ab5[j1, j2, p] = (
                        np.power(
                            1j,
                            abs(m1 - m2) - abs(m1) - abs(m2) + l2 - l1 + p,
                        )
                        * np.power(-1.0, m1 - m2)
                        * np.sqrt(
                            (2 * l1 + 1)
                            * (2 * l2 + 1)
                            / (2 * l1 * (l1 + 1) * l2 * (l2 + 1))
                        )
                        * (l1 * (l1 + 1) + l2 * (l2 + 1) - p * (p + 1))
                        * np.sqrt(2 * p + 1)
                        * wig.wig3jj_array(
                            2 * np.array([l1, l2, p, m1, -m2, -m1 + m2])
                        )
                        * wig.wig3jj_array(2 * np.array([l1, l2, p, 0, 0, 0]))
                    )
                elif p > 0:
                    self.translation_ab5[j1, j2, p] = (
                        np.power(
                            1j,
                            abs(m1 - m2) - abs(m1) - abs(m2) + l2 - l1 + p,
                        )
                        * np.power(-1.0, m1 - m2)
                        * np.sqrt(
                            (2 * l1 + 1)
                            * (2 * l2 + 1)
                            / (2 * l1 * (l1 + 1) * l2 * (l2 + 1))
                        )
                        * np.lib.scimath.sqrt(
                            (l1 + l2 + 1 + p)
                            * (l1 + l2 + 1 - p)
                            * (p + l1 - l2)
                            * (p - l1 + l2)
                            * (2 * p + 1)
                        )
                        * wig.wig3jj_array(
                            2 * np.array([l1, l2, p, m1, -m2, -m1 + m2])
                        )
                        * wig.wig3jj_array(2 * np.array([l1, l2, p - 1, 0, 0, 0]))
                    )

        wig.wig_table_free()
        wig.wig_temp_free()

        res = {"wig": self.translation_ab5}
        with open(dpath / f"lmax{self.lmax}.pickle", "wb") as f:
            pickle.dump(res, f)
        self.log.info("Calculated translation table!")

compute_fibonacci_sphere_points staticmethod

Computes the points on a Fibonacci sphere using the given number of points.

Parameters:

Name Type Description Default
n int

The number of points to be computed on the Fibonacci sphere. Defaults to 100.

100

Returns:

Name Type Description
tuple ndarray

A tuple containing: - points (np.ndarray): The Cartesian points of the Fibonacci sphere. - theta (np.ndarray): The polar angles of the points on the Fibonacci sphere. - phi (np.ndarray): The azimuthal angles of the points on the Fibonacci sphere.

Source code in yasfpy/numerics.py
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
@staticmethod
def compute_fibonacci_sphere_points(n: int = 100):
    """Computes the points on a Fibonacci sphere using the given number of points.

    Args:
        n (int, optional): The number of points to be computed on the Fibonacci sphere.
            Defaults to 100.

    Returns:
        tuple (np.ndarray): A tuple containing:
            - points (np.ndarray): The Cartesian points of the Fibonacci sphere.
            - theta (np.ndarray): The polar angles of the points on the Fibonacci sphere.
            - phi (np.ndarray): The azimuthal angles of the points on the Fibonacci sphere.
    """
    golden_ratio = (1 + 5**0.5) / 2
    i = np.arange(0, n)
    phi = 2 * np.pi * (i / golden_ratio % 1)
    theta = np.arccos(1 - 2 * i / n)

    return (
        np.stack(
            (
                np.sin(theta) * np.cos(phi),
                np.sin(theta) * np.sin(phi),
                np.cos(theta),
            ),
            axis=1,
        ),
        theta,
        phi,
    )

compute_spherical_unity_vectors

The function computes the spherical unity vectors e_r, e_theta, and e_phi based on the given polar and azimuthal angles.

Source code in yasfpy/numerics.py
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
def compute_spherical_unity_vectors(self):
    """
    The function computes the spherical unity vectors e_r, e_theta, and e_phi based on the given
    polar and azimuthal angles.
    """
    self.e_r = np.stack(
        (
            np.sin(self.polar_angles) * np.cos(self.azimuthal_angles),
            np.sin(self.polar_angles) * np.sin(self.azimuthal_angles),
            np.cos(self.polar_angles),
        ),
        axis=1,
    )

    self.e_theta = np.stack(
        (
            np.cos(self.polar_angles) * np.cos(self.azimuthal_angles),
            np.cos(self.polar_angles) * np.sin(self.azimuthal_angles),
            -np.sin(self.polar_angles),
        ),
        axis=1,
    )

    self.e_phi = np.stack(
        (
            -np.sin(self.azimuthal_angles),
            np.cos(self.azimuthal_angles),
            np.zeros_like(self.azimuthal_angles),
        ),
        axis=1,
    )

Comments